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ON ALTERNATIVE REPRESENTATIONS OF TIME VARYING
VISCOELASTIC MATERIALSt

NESTOR DISTEFANO

University of California, Berkeley

Abstract-Conditions for equivalence between linear differential and a class of integral operators are given and
the results are devoted to applications to alternative representations oflinear, time varying viscoelastic materials.
Several examples are presented, including a discussion on sufficient conditions under which time varying linear
differential operators can be used to analytically represent asymptotically stable materials, and an example on the
inversion of integral equations appearing in the treatment of thermorheologically simple materials.

1. INTRODUCTION. REMARKS ON THE REPRESENTATION OF GENERAL
VISCOELASTIC MATERIALS

THE literature on representation of general viscoelastic materials by means of linear, time
varying operators is scarce and was mainly devoted in the past to materials such as concrete
[1], whose mechanical properties are not time-invariant due to aging processes induced by
chemical hardening, moisture diffusion, etc. At present, those operators are progressively
attracting the attention of other areas in view of its application to linearized theories of
thermo-elasticity and thermo-viscoelasticity.

In general, most of the currently available research lies in the area of integral equations,
mainly because integral equations are a natural way of formulating the physical problem.
In some important applications, the step response (or its derivative) can experimentally
be determined furnishing in this way the kernel of the integral operator, thus reducing
considerably the analytical procedures of the identification problem.

Apart from the classical work of Arutiunian [1], the literature on differential constitutive
equations seems to be scarce. Recent work is available [2] wherein a second order dif
ferential equation is investigated and [3,4], where differential equations are derived from
consideration of time-varying, spring-dashpots, models.

Interest in a complementary alternative approach arises from many different points of
view. Besides systematic aspects, indeed the most important reason is the necessity of an
approach exhibiting the advantages of an easy formulation with the possibility of easy
numerical solutions. And while the solution of several hundreds, first order ordinary
differential equations subject to initial values is a routine matter for a digital computer,
the solution of systems of Volterra integral equations by means of the usual quadrature
procedures may easily exceed the rapid access storage capacity of contemporary computers.
On the other hand, a combination of the two approaches, integral and differential, makes
tractable and feasible the solution of several important identification problems associated
with linear and nonlinear viscoelasticity. Problems of this type will be presented separately.

t This work was in part sponsored by a University of California Research Grant.
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2. MATHEMATICAL BACKGROUND

(21 )A::+B(t)::,

It is well known that the solution of linear ordinary differential equations subject 10

initial conditions can be reduced to the solution ofa class of linear Volterra integral equa
tions_ There are several methods to accomplish this purpose, notably the so called Fubim
method (Tricomi [5J) [6J, which is found to be of great interest in the investigation or
asymptotic solutions of differential equations. The theory of linear systems also furnishes
very expressive examples of this possibility. For example, every solution of the system

d:'

dt

(2,2)

satisfies a linear Volterra integral equation

:: = y+ LY(t-r)B(r)z(r)dT,

where y and Yare the vector and matrix solution respectively of the reduced, non perturbed,
(B == 0) equation and where y(O) = z(O) and nO) = 1, the identity matrix (Bellman [7J).

Conversely, Evans [8J reduced the solutions of a class of Volterra integral equations to
the solution of a certain differential equation subject to appropriate initial conditions by
considering the class of Volterra equations whose kernels satisfy certain linear differential
equations. This idea seems to have been first considered by Evans although little attention
in the author's opinion has been paid to this interesting possibility.

In the same line, Teodone [9J and Volterra [10J considered the class of integral equations
whose inversion requires only a finite number of integrals and derivatives. This turns out
to be an interesting point of discussion nowadays when accurate digital computers are
available and when the idea of approximate solutions under suitable metrics replaces the
necessity of solutions obtained by means of elementary operators. In this sense, Bellman
et ai. [11] introduced the idea of differential approximation for the solution of equations of
the type

x = \'+ f'I(t-r)X(rldr,
·0

(23)

(2.4)

obtained in the course of constructing some mathematical models of physiological pro
cesses connected with cancer chemotherapy. Here the kernel I is assumed to satisfy an
ordinary, generally nonlinear, differential equation, The solution x is then obtained as the
solution of an approximate linear differential equation, the approximation defined by a
suitable norm, subject to appropriate initial conditions which in turn depend on the given
function y.

In this paper, equivalence of the representations given by

y =c cx+ f'I(t, r)x(r)dr
()

and

(2.5)

is investigated and the results are devoted to applications of alternative, differential and
integral, representations of linear visco-clastic materials. Several examples involving
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specialized representations are presented in Section 6. In Section 7, the method is applied
to finding sufficient conditions for the representation of several types of asymptotically
stable materials. Finally, the algorithm is applied to the numerical solution of integral
equations typical in the theory of thermorheologically simple materials. Further extensions
of the method, in connection with the identification problem, will be discussed elsewhere.

3. FORMULATION OF THE EQUATIONS

Let C(t, r), r S; t, be the response (creep function) of a general linear (time varying)
material submitted to a unit step stress a(t) = H(t - r) starting at time r. Then the response
e(t) (strain) to a given stress history a(t) is given by

e(t) = L00 C(t, r) da(r). (3.1 )

(3.2)

It will be assumed here that C(t, r) possesses a discontinuity of the first kind (finite jump)
at r = t+. It will also be assumed that the material is in a quiescent state prior to an instant
t = 0 and that any stress history a(t) and its derivatives up to the Nth order are continuous
except possibly at a finite number of points where finite jumps are allowed.

Integrating equation (3.1) by parts and taking into account the restrictions imposed
above, the function e(t) may be written

e(t) = C(t, t+)a(t)+ f~ f(t, r)a(r) dr,

where

()
f(t, r) = -;lC(t, r)

cr
(3.3)

is the "impulse creep function" of the material. The term C(t, t + )a(t) accounts for the delta
function singularity introduced by the derivative of C(t, r) at r t +.

An alternative, differential, representation of a linear, time varying viscoelastic material
can be given by the following N-order differential equation

The principal aim of this paper is to investigate conditions on ai' bi and C(t, r) under which
the representations given by the equations (3.2) and (3.4) are equivalent and to derive an
algorithm to obtain one representation when the other is given. In this line, let us first
consider an example which without loss in generality, exhibits the essence of the method
proposed here.

Consider the integral representation given by equation (3.2). In most applications the
kernel f(t, r) of the integral equation can be conveniently approximated by the sum of
products offunctions t and T. Consider for instance, the class of kernels which may be written
in the form

(3.5)
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This representation suggests the possibility of considering 1(t, r) as the solution of second
order partial differential equation of the type

. (y(t, r) t--: 2f(t, r)
ao(t)f(t,r)+aJU)-::;~+' =0,

d

subject to suitable initial conditions given by

[fit, r)]FI = (,(o(t),

,·.·.(]f(.t, [).-.J' = (Xl (f),
_ (,{ _, I

(3.7)

where Lio(l) and (ll(t) are given functions of t.
Clearly, by substitution of j(t, r) given by equation (3.5) in the differential equation (3.6),

it is recognized that FdO and F2(t) are two solutions of the following second order ordinary
differential equation

and that functions fPI and fP2 must satisfy the following system of linear equations

fPj(t}FI (t)+fPAnF2 (t) = cxo(t),

dFdl) dF2(t)
fPI(t)-~ ·-·+4J?(t)·~·-- = (X I(I),

dt - dt

(3.8)

(3.9)

obtained by direct substitution of fit. r) given by equation (3.5) in equation (3.7). If, for
given functions Cia and Lit, the functions fPI and 4J2 are required to be unambiguously
determined, then FI and F2 must be any two linearly independent solutions of the ordinary
differential equation (3.8).

Now, differentiating equation (3.2) twice, forming the sum

(12 = L

and taking into account equation (3.6), the following differential equation is obtained

where

dC d 2C . dj'(t, t) (alIt, T})
hIt) = aoe + (1 --. +-- + at f (t, t)+' . + .----~.• -.----

o I dt de 2 ' dt ct t _ ,

dC
hl (t) = (/1 C +2~d---+ nt, t), (3.11)t .

and where C stands for C(t, (+).
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(3.12)

This example shows the equivalence between the representations given by equations (3.2)
and (3.10) when certain conditions have been fUlfilled. It also shows how to construct the
kernel of the integral equation when the differential equation is given, and conversely.
In fact, suppose that C and the kernel f(t, r) given by equation (3.5) are known functions.
Then ao and a1 appearing in equations (3.8) and (3.10) can be calculated from the system

dF1 dZF1
aO(t)F1(t)+a 1(t)-<it = - dtZ '

dFz dZFz
ao(l)Fz(l) +a1(l)Cit = - dt Z '

and bo, b1 and bz appearing in equation (3.10) can be directly evaluated by means of
equation (3.11).

Conversely, given the differential equation (3.10), e(t) admits the representation given
by equation (3.2), where

(3.13)

and f(t,1) is given by equation (3.5) where F 1 and Fz are any two linear independent
solutions of equations (3.8) and the functions ({J1 and ({J2 can be evaluated from equation
(3.9). Functions (;(0 and a1 appearing in equation (3.9) can be recursively evaluated using
equation (3.11), yielding

(3.14)

(4.1)

4. GENERALIZATION. KERNELS OF ORDER N

The formal procedure used above can be generalized to order N under reasonable
conditions on functions aj, hj and C.

Let am, i 0, 1, ... , N, aN == I, be a set of N real functions, C(t, r) == 0 if t < r, and
such that it satisfies the following partial differential equation

i aj(t) a
j

j aC(t, 1) 0, aN == 1.
i=O at or

Under such conditions function C(t, r) is defined to be an Nth order creep function and
the associated function

is defined to be a kernel oforder N.

nt,1) =
cC(t, r)

-'--~or (4.2)
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In what follows, the following "'natural" initial conditions associated with the differen
tial equation (4.1) are considered

CU. I! I h:v(tj

(4.31

i = 1,2, ... ,N,

where functions (X;-l are obtained from the following recurrence relations

i (N-J)d i iC(t,t+j
Ct.. _ 1(t) = h" - '\' U v_ . __ -;-.-.:

, ,,' L.. I .J •• dt'- I
j~O /-J

(4.4)

i = I. 2... '. N,

where I.~ 0 if i < Jand where hi- i 0"" 0, 1, ... , N is a set of N + 1 arbitrary real functions.
Now, given the differential equation

(4.5)

and the Nth order creep function CU, r) which satisfies the initial conditions given by the
equations (4.3) and (4.4), then

::(t) = CU, t+ )O'(tJ + r f(l, r)O'(r) dr,
Jo

(4.6)

and conversely.
It will be first proved that if the Nth order creep function C(t, r) satisfies the initial

conditions given by equations (4.3) and (4.4), then equation (4.6) implies equation (4.5).
In fact, using equation (4.3), equation (4.4) yields the following equation for b; in terms of
functions Ui'

(4.7)

i = 0,1, ... ,N.
Differentiating E(t) given by equation (4.6) up to the lth order, multiplying by ui(l),

forming the sum I7~ 0 ai(dii;fdt i
) and taking into account equations (4.1). (4.2) and (4.7l,

equation (4.5) is finally obtained.
The proof is completed by observing that the representation given by equation (4.6)

is unique as it follows from the unicity of the solution of the partial differential equation
(4.1) subject to the initial conditions given by equations (4.3) and (4.4).
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5. CONSTRUCTION OF Nth ORDER CREEP FUNCTIONS

Let Fi(t), i = 1,2, ... , N, be a set of N linearly independent solutions of the following
ordinary differential equation

(5.1)

Let Cf'i(t), i = 0,1, ... , N, be a set of N +1 arbitrary functions. Then

N

C(t, r) = Cf'o(t) + L ['l:'j(t)- \{Ii(r)]Fi(t),
i= 1

where

(5.2)

i = 1,2, ... ,N,

is an Nth order creep function as may be proved by substitution in equation (4.1). Recalling
equation (4.2), the associated influence creep function results

N

f(t, r) = L Cf';(r)F;(t).
i= 1

(5.3)

If the representations given by the equations (4.5) and (4.6) are to be equivalent, then
C(t, r) and f(t, r) given by equations (5.2) and (5.3) respectively, must satisfy the initial
conditions given by equations (4.3) and (4.4) furnishing in this manner a set of N +1 equa
tions from where it is possible to evaluate functions Cf'j(t). From equation (5.2) and the first
equation (4.3), it follows

Now, introducing the following N-dimensional vectors

(5.4)

and

and the matrix

Cf' = (Cf';),

IX = (IX;),

i = 1,2, .. . ,N,

i = 0, 1, ... , N - 1,

i,j 1,2, ... , N,

(5.5)

(5.6)

(5.7)

substitution of equation (5.3) in the second equation (4.3) yields

WCf' = IX, (5.8)

an equation which allows for the evaluation of the remaining N functions Cf'l, Cf'l,"" Cf'N
unambiguously, since det. W is the Wronskian of a set of N linearly independent functions.
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6. APPLICATIONS. SPECIAL REPRESENTATIONS

(a) Functions ai' i = 0, I, ... , N, aN 1, are constants

When the coefficients a; are constants, a useful alternative representation of an N -order
creep function Crt, r) is given by

C(t, ,) = <1>o(t) + itr<1>;(~)F;(t -~) d~, (6.1)

where <1>;, i = 0,1, ... , N, is a set of N + 1 arbitrary functions, as may be proved by sub
stitution in equation (4.1). The associated influence creep function is given by

N

I(t, r) = L <1>;('r)F;(t r). (6.2)
i--;:;::1

Now, let Pi' i = 1,2, ... , N be the roots of the characteristic polynomial

aO +a 1P+ .. , +pN = 0, (6.31

then Fi in equations (6.1) and (6.2) are given by

(6.4)

With regard to functions <1>; appearing in equations (6.1) and (6.2), from the first equation
(4.3) we obtain

(6.5)

(6.6)

and from the second equation (4.3), and taking into account equations (6.2) and (6.4),
we obtain the following system of equations

<1> 1+ <1>2 + ... <1>N = lXo(t),

Pl<1>l + P2<1>2 + ." + PN<1>N C(t(t)

P'{ - 1<1>1 + p'i - 1<1>2 + ... + pZ - I<1>N = C(N - I(t),

from where the remaining functions <1>;, i = 1,2, ... , N, can be evaluated. In system (6.6),
functions IX; are given by equations (4.4), if due account is taken that the a;'s are constants.

The expression for qt, ,) given by equation (6.1) can be slightly modified so as to obtain
a representation which does not explicitly contain integrals. Let ),;(t), i = 1,2, ... , N be N
functions given by

then

(6.7)

1,2, ... ,N. (6.8)

Substitution of <1>; given by equation (6.8) in equation (6.1) and integration by parts
yields the result

N N

qt, r) <1>o(t)+ L AiU)- L A;(r)ePi(t-t).
;:::::1 j=l

(6.9)
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When ao == 0 and the polynomial

at +a2P+ ... +pN
-

I = 0

is Hurwitz, and if for convenience we set PI = 0, (;i = - Pi > 0, i = 2,3, ... , N, then
C(t, ,) given by equation (6.9) reduces to

provided

N

C(t, r) = <l>o(r)+ L Ai(t)(l-e-oi(t-r)),
i= 2

N

<l>o(t)+ L Ait) = O.
i=1

(6.10)

(6.11)

Under appropriate restrictions on functions <1>0 and Ai(t), C(t, r) given by equation (6.10)
was introduced by Arutiunian [IJ to represent the creep of concrete.

(b) Coefficients ai and bi are constants

The case when not only the a;'s but also the b;'s are constants, leads to consideration of
time-invariable materials, as might be expected. The integral equation reduces in this case
to one of the convolution type. Ifthe characteristic polynomial is Hurwitz, the creep function
and the influence creep function are given by

N <1>.
C(t-r) = <1>0 L ---'(I_ePi(t-r)), (6.12)

i=1 Pi
N

f(t-r) = L <l>ieP,(I-r),
i= t

(6.13)

respectively, where <l>i, i 0,1, ... , N are constants which must satisfy equations (6.5) and
(6.6), taking into consideration that a;, bi and consequently lXi' i = 0, 1, ... , N -1 appearing
in equation (6.6) are constants. In particular, the following known relations [12J---derived
from equation (4.7~

bo = aoco+ado+ad~)+ +f~-1),

bl = a1co+ado + +f~-2)

(6.14)

bN = co,

hold between a;, bi' i = 0,1, ... , N, CO = C(O) and the successive derivatives of the kernel
f(t) at t 0,

f (j) = [dij(t~
o dtJ '

1=0
j = 0, 1, ... , N -1.

(c) ai = bi == 0, i = 0, 1, ... , N -1, aN == 1, bN -1= 0
in this case, the differential equation (4.5) reduces to

b ( )
dNa(t)

Nt dtN . (6.15)
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The associated kernel is immediately found to be

f(t,r) 4Jl(r)+4J2(r)(t-r)+ .. +4JN(r)(t-rt 1
(6. i61

Substitution of fit, r) given by equation (6.16) in equation (4.3) yields the followll1g
conditions for functions 4Ji' i = 1,2, ... , N,

1.2.... , N, (6.l7)

i = 1. 2, ... , N.

where lXi are given by equation (4.4), reducing in this case to be

ct;"l(t) = _(~)~;(t),

Substitution of equations (6.17) and (6.18) in equation (6.16) yields

I(t,r) = -[Nb~}+(:)(t-r)b~l+ ... +(t-r)N~lWJ

7. ASYMPTOTICALLY STABLE MATERIALS
Let

t;(t) = C(t, t+)O'(t)+ ff(t, ~)O'(~)d,

and

(6.18)

(6.19)

(7.1)

ao£+a1t:(l)+ .. . t(N) = boO'+bl(J(I'+ ... +bN(J(NJ, (7.2)

be two equivalent representations of a given viscoelastic material, i.e. C(t, r) is an N-order
creep function which satisfies the initial conditions given by equations (4.3) and (4.4). In
some applications, conditions are required such that for all bounded inputs O'(t), <:(t) is
bounded as t --> CD, for all r S t. From inspection ofequation (7.1), a necessary and sufficient
condition for boundedness is

Cit, r) = fI(t, ~) d¢ <x, (7.3)

as 1 --> ''YJ.

The converse problem, i.e. for all t:(t) bounded, under which conditions (J(t) is bounded,
is one of great interest and difficulties, related to a class of Tauberian theorems. Several
results, including deterministic and stochastic versions of the problem, are available [13J.
Here we do not pursue the same path. Using the formalism presented in previous sections
and several standard results in the theory of ordinary differential equations, we find con
ditions for stability of differential equations of the type (7.2), which appear to be of interest
in the construction of differential constitutive equations of asymptotically stable time
varying materials.

Given the differential equation (7.2), equation (7.3) implies that the problem is then
equivalent to finding conditions under which the solutions of the partial differential
equation (4.1), subject to the initial conditions (4.3), are bounded. This problem is in turn
intimately related to the investigation of the asymptotic behavior of the solutions of the
differential equation (5.1). A detailed examination of this and related matters is beyond
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the scope of this paper. Many results are available in the literature on the stability and
asymptotic behavior of ordinary differential equations. See for instance [5,7,14]. In the
spirit of Fubini method, a memoire by Ghizzetti [6] can be mentioned. In this memoire, a
remarkable criteria for stability is given, which may be considered a perturbation theorem
with respect to the classical Hurwitz criteria when the coefficients are constants.

Here we shall only consider two examples which appear to be of interest in applications.
Let

F = (FJ, i = 1,2, ... ,N, (7.4)

be an N-dimensional vector whose components are linearly independent solutions of the
differential equation (5.1). Now, recalling equations (5.3), (5.4) and (5.8), equation (7.3)
can be written

(7.5)

where superscript T denotes transpose. Suppose now that the limits

exist and that

lim bi(t) = bioo ,

i = 0, 1, ... ,N,

i = 0, 1, ... ,N,
(7.6)

(7.7)

is a Hurwitz polynomial. Then the functions Fi(t) and its derivatives to the order N -1 will
tend exponentially to zero as t --> 00, and in consequence the limit of C(t, r) as t --> 00 given
by equation (7.5) will reduce to

lim C(t, r) = bNoo ,
t~oo

(7.8)

independent of r.
If equation (7.7) is no longer required to be a Hurwitz polynomial, then the limit of

C(t, r) as t --> 00 will exhibit in general a dependence with the initial time r. Consider for
instance the case where a o == °and a;, i = 1,2, ... , N -1, aN = i, are constants. Let

at +a2P+ ... +pN
-

t = 0, (7.9)

be a Hurwitz polynomial. Then a linearly independent set of solutions of equation (5.1) is
found to be

(7.10)

where P2, P3, ... , PN are the real negative roots of equation (7.9). Recalling equation (6.2)
and taking into account equation (7.10), C(t, r) is given by

(7.11)

where the functions CfJi are given by the solution of system (6.6). Assuming that functions
bi(t) possess finite asymptotic limits bioo , functions CfJi will also tend asymptotically to a
finite limit CfJioo as t --> 00. Then

(7.12)
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which express the fact that the asymptotic value of CU, T) as t -+ c!) relies upon the eXistence
of the integral

ff (PI(~) d~ < J

If the coefficients ai are not constants but

a\",+a2x,p+ ... p"'i 1=0,

is a Hurwitz polynomial and

lim (lo(t) = 0,
t,· .. 'J'

0.14)

(7.15)

then the existence of a limit for function C(t, T) will still depend on the existence of the
integral

If qJl(~) d~ < rx

where qJI is the first element of vector qJ given by equation (5.8).

(7.16)

8. SOLUTION OF INTEGRAL EQUATIONS-EXAMPLE

In the theory of thermorheologically simple materials, integral equations of the type

I' (1

u(t)+~- f[a(t) - a(T)]u(r) dT = v(t),
o (,T

(8.1)

are frequently encountered. An approximate differential equation can be found by assuming
that g(~) approximatingf(() under certain norm, satisfies a linear differential equation

/II

I ag(i) = 0,
i=O

(8.2)

(8.3)

and applying some ofthe results presented above. We omit here a discussion on approxima
tion aspects, which will be presented separately in connection with the identification
problem, and restrict ourselves to the following numerical example.

Let u be the unknown function in the integral equation

u(t)+ 1a'(T)e-[a(I)-a(T)]U(T) dT = v(t),

where

v(t) = (l + a)e - a,

and a is a function given by the differential equation

(8.4)

a(O) = 0. (8.5)

A solution to (8.3) and (8.4) is found to be

u(t) = e-a(t),

as it can be proved by direct substitution.

(8.6)
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Since the kernel in equation (8.3) is already given as a product of functions of t and r,
by differentiation, equation (8.3) can be reduced to the following first order differential
equation

u' = -2a'u+v'+a'v, u(O) = 1. (8.7)

Equations (8.4), (8.5) and (8.7) constitute a straightforward initial-value problem which was
numerically solved using a Runge-Kutta scheme on a CDC 6400, with step size 0·01.
Results agreed in 9 or 10 significant figures with the exact values, in the interval 0 :::::; t :::::; 1.
Execution took less than a second.

9. DISCUSSION

The foregoing results were derived for the simplest, linear uniaxial case, to emphasize
the structure of the underlying algorithms. It is noted, however, that with no essential
modifications, they still hold in higher finite dimensional spaces. It is also noted that this
approach is not restricted only to linear operators, but embraces also Volterra integral
equations of the type

x(t) = y(t) + {f(t, r)G[x(r)] dr

where G is a nonlinear function of the n-dimensional vector x. This and related matters
will be discussed elsewhere.
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A6cTpaKT-JlaIOTcH yCJIOBHH JKBHBaJICHTHOCTH MeJK.ny JIHHCHHblMH .nH<!J<\IepeHIJ.HaJIbHbIMH oncpaTopaMH
H HCKOTOpblM KJIaCCOM HHTerpaIlbHblX onepaTopoB. Pe3YIlbTaTbl npl1MeHHIOTCH .nIlll Bapl1aHTa npe.nCTa
BIIeHI1H I1HHeHHblx, 3aBI1CHUJ.I1X OT BpCMeHI1, B1I3Koynpyrl1x MaTep"aIlOB. npe.ncTaBIIHIOTcll HeCKOIlbKO
npl1MepOB, 3aKIIIO'Iall o6cyJKAeHHe AOCTaTO'lHblX YCIIOBHH, npH KOTOPblX MOlKHO nOIlb30BaTbOli I1I1HeHHbIMJol
AI1<!J<!JepeHL\HaIlbHI,IMI1, 3aBHClIUJ.I1MI1 OT BpeMCHH, onepaTOpaMI1 Mil aHaIlI1TI1'1.ecKoro npeAcTaBJIeH1111
aOI1MnTOTI1'1.eCKH cTa6HIIbHblX MaTepHaIlOB. JlaeTclI, TaKJKe, npl1Mep I1HBepcHI111HTerpaIlbHblx ypaBHeHHH,
IWTopble BCTpe'laIOTCli B o6cyJKAeHHI1 TepMOpeOJlOrH'IeCKI1X, npoCTblX MaTepHaIlOB.


